
Assignment 8

G4360 Introduction to Theoretical Neuroscience

DUE: April 15, 2019 11:59 pm

As usual, recall that I tend to write long problem sets, but most of it is informational, there

is not that much for you to actually do. So please don’t be put off by the length; things you

actually have to do are indicated in red. Also, the last problem in optional.

Notation: boldface small letters, like r, represent column vectors; rT is a row vector, the transpose of r;

boldface capital letters, like W, represent matrices; WT is the transpose of W; non-boldface letters

represent numbers, either scalars or the individual elements of vectors or matrices.

1 The inhibition-stabilized network (ISN)

First we’ll do an extensive setup. The problem will be to demonstrate the paradoxical effect using

nullclines.

Consider a two-population model of firing-rate neurons: one excitatory (E) population and one inhibitory

(I) population. rE and rI are the firing rates of the excitatory and inhibitory populations, respectively,

represented by the vector r =

(
rE
rI

)
. The matrix of connections between them is

W =

(
wEE −wEI
wIE −wII

)
, where wXY represents the (positive) strength of the connection from Y to X. We

let the vector of external inputs to the two populations be i. We let f(v) be a nonlinear function applied

element-wise to the elements of the vector v, i.e. f(v) is a vector with ith element f(v)i ≡ f(vi). We

assume the steady-state firing rate rSS for a given input is given by f applied to each unit’s input:

rSS = f(Wr + i). We assume the network approaches its instantaneous steady state with first-order

dynamics: letting T =

(
τE 0

0 τI

)
be the diagonal matrix of E and I time constants, we have

T
d

dt
r = −r + f(Wr + i) (1)

Suppose rSS is a stable fixed point; we will linearize the dynamics about this fixed point. You know that,

letting f ′E and f ′I be the derivative of f evaluated at the E and I components of WrSS + i, respectively, the

linearized weights are

(
∂fE/∂rE ∂fE/∂rI
∂fI/∂rE ∂fI/∂rI

)
=

(
f ′EwEE f ′EwEI

f ′IwIE f ′IwII

)
; to make notation simpler, let’s

define this to be J =

(
jEE −jEI
jIE −jII

)
(we’ll assume f(x) is a monotonically increasing function of x, so

that all the f ′X ’s are positive and hence all the jXY ’s are positive). Let iSS be the steady-state input that

yields the fixed point rSS . If there is a deviation ∆i from iSS , in the linearized equation this becomes

δi ≡

(
f ′E∆iE
f ′I∆iI

)
. Define small deviations in response from the steady state by r = rSS + δr. Then the
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equation for the dynamics linearized about the fixed point is

T
d

dt
δr = −δr + Jδr + δi = −(1− J)δr + δi (2)

where 1 is the identity matrix. This should all be familiar to you, but if it’s not, satisfy yourself that this is

all true.

Recall what we did in class to show the ISN paradoxical response: for a steady-state input perturbation δi,

we wrote down the equation for the steady-state response δr: δr = (1− J)−1δi. For a 2× 2 matrix

M =

(
a b

c d

)
, the inverse is given by M−1 = 1

DetM

(
d −b
−c a

)
. So

(1− J)−1 = 1
Det (1−J)

(
1 + jII −jEI
jIE 1− jEE

)
. Recall that, for the fixed point to be stable, we must have

Det (1− J) > 0. Thus, for a stable fixed point, if and only if jEE > 1 (which means the E population alone

would be unstable if I firing was frozen at its fixed point level; look at the equation for rE with rI fixed, to

see why jEE > 1 implies excitatory instability), the I cells show a “paradoxical” response. This means that,

if an input is given only to I cells (δi ∝

(
0

1

)
), the steady-state response of the I cells is of opposite sign to

the input, so that adding excitation to I cells paradoxically lowers their firing rate in the new steady state.

Now show the same things using nullclines. Again assume that the function f(x) is a monotonically

increasing function of x. The equations for the E and I nullclines are the E and I components of the

fixed-point equation: r = f(Wr + i). We will draw the nullclines with rE on the x axis and rI on the y axis.

a For the I nullcline, compute its slope, drI/drE ; you should find that it is given by jIE
1+jII

. This means

that the nullcline always has positive slope.

b Now for the E nullcline, compute the inverse of its slope, drE/drI ; you should find that this inverse

slope is jEI
jEE−1 . This means that the slope is positive if the E subnetwork is unstable, and negative if

the E subnetwork is stable.

c Show that the condition that Det (J− 1) > 0, which is necessary for stability, is equivalent to the I

nullcline having a larger slope than the E nullcline. So for a fixed point to be stable, it is necessary

that the I nullcline have a larger slope than the E nullcline at their crossing that defines the fixed

point.

d So, we’ll draw two versions of the nullclines: one that is an ISN, one that is not. First draw the I

nullcline, which will be the same for both versions. Imagine that, for rE small, the I-nullcline solution

for rI should be small, while for rE large, rI is large; so the nullcline could start toward the bottom

left, and make, for example, a sigmoidal shape to the top right, with positive slope always.

e Now, draw the E nullclines, assuming a stable fixed point. Imagine that when rI is high, rE is low, so

the nullcline starts in the upper left corner; while when rI is low, rE is high, so it ends up in the

lower right corner. In the non-ISN version, it has a negative slope all the way. In the ISN version, it

has a positive slope in a middle portion, so the nullcline looks like a sideways S; and the fixed point is

on this positive-sloping middle portion (and the necessary condition for stability on E and I nullcline

slopes is obeyed).

f Draw the arrows indicating the direction of flow in the different regions of the nullcline plane. Show

that, in negative-sloping regions of the E nullcline, if rI is kept fixed, small perturbations of rE off
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the E nullcline will flow back to the nullcline; while in positive-sloping regions, it will flow away. This

also tells you that in positive-sloping regions, the E subnetwork alone is unstable, while in

negative-sloping regions it is stable.

g Now, suppose you add a positive input to the I cells. Show that the resulting change in the I nullcline

is to reduce rE by the same amount for any given rI , that is, to move the I nullcline leftward. There

is no change in the E nullcline. Show that, for a stable fixed point, if the network is an ISN, the

result is to decrease both rE and rI in moving to the new fixed point; while for a non-ISN, the result

is to decrease rE but increase rI . (For the ISN, assume that the new fixed point, like the old one, is

on the positive-sloping portion of the E nullcline.)

h In the ISN case, draw the dynamical path followed by rE , rI from the old fixed point to the new fixed

point after adding the positive input to I. This addition of input instantaneously moves the I

nullcline; the resulting derivative at the old fixed point (which is no longer on the I nullcline and so

no longer a fixed point) has an upward component, becoming horizontal as the flow crosses the I

nullcline, and then going downward to the new fixed point (it might spiral into the fixed point if

there are complex eigenvalues, or go straight down to it if eigenvalues are real). Note, regarding the

old fixed point as a perturbation from the new fixed point, that, even though the new fixed point is

stable, the dynamics move further away from the new fixed point (the upward movement) before

ultimately flowing back to it. This is an effect of non-normal dynamics. (Recall that biological weight

matrices, of the form J =

(
jEE −jEI
jIE −jII

)
with all jXY ’s positive, are non-normal, meaning that

their eigenvectors are not orthogonal, because JJT 6= JTJ, which is the necessary and sufficient

condition for non-normality.)

2 Eigenvectors, Schur Vectors and Non-Normal Dynamics in

Higher Dimensions

Here we’ll see how the spatial structure of connectivity relates to the spatial structure of eigenvectors and

Schur vectors in a simple case, and examine non-normal dynamics in this case.

Consider a 2D network of 32× 32 E and I cells (one E cell and one I cell at each of the 32× 32 grid

positions). Assign each grid location a preferred orientation as follows: break the grid up into a 4× 4 set of

8× 8 grid positions. The top left 8× 8 grid is assigned a preferred orientation according to its angle with

its center. Orientation runs from 0 to 180o, so that angle is divided by two. Thus, for grid position (x, y),

with x and y both in the range 1 to 8, the preferred orientation is ArcTan( y−4.5
x−4.5 ) ∗ 180o/(2π) (and add

180o if this is a negative number, so that the orientation runs from 0o to 180o instead of from −90o to 90o).

Orientation maps of neighboring 8× 8 grids are mirror images of each other, flipped across the border

between them so that the orientations along their borders are matched. Thus, for y in the range 1 to 8, if x

is in the range 9 to 16, (x, y) is assigned the same preferred orientation as (17− x, y); and then if x is in the

range 17 to 32, (x, y) is assigned the same preferred orientation as (x− 16, y). Then for y in the range 9 to

16, (x, y) is assigned the same orientation as (x, 17− y); and then for y in the range 17 to 32, (x, y) is given

the same orientation as (x, y − 16). Visualize the orientation map as a heat map, using a circular color

map, e.g. one that goes from blue to red as orientation goes from 0o to 180o.

Now let’s use vector notation, e.g. x or y, to represent a two-dimensional grid position, e.g. x = (x1, x2)

where x1 and x2 are locations along the two grid coordinates. Use periodic boundary conditions (treat the
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top and bottom of the grid as next to each other, and similarly for the left and right of the grid). Let

d(x,y) be the shortest distance across the periodic grid between grid positions x and y:

d(x,y) =
√

Min[(x1 − y1)2, (32− (x1 − y1))2] + Min[(x2 − y2)2, (32− (x2 − y2))2] (3)

Let θ(x) be the preferred orientation at position x, and let Θ(x,y) be the shortest distance around a 180o

circle between θ(x) and θ(y):

Θ(x,y) = Min (|θ(x)− θ(y)| , 180o − |θ(x)− θ(y)|) (4)

We’ll use the simple case in which both E projections are identical, and both I projections are identical.

Let the connection strength from the cell of type Y (E or I) at position y to the cell of either type at

position x be proportional to a product of a Gaussian function of the distance between them and a

Gaussian function of their difference in preferred orientation:

WY
xy ∝ e

− d(x,y)2

2(σY
d

)2 e
−Θ(x,y)2

2σ2
θ (5)

Here, σθ has been chosen identical for all connection types. Set σθ = 20o, in line with findings in V1 that

the excitation and the inhibition received by middle and upper layer cells on average have the same

orientation tuning. Take σEd = 23 grid units and σId = 2.3 grid units, at least qualitatively in line with the

observation that excitation but not inhibition makes long-range projections. Normalize (scale) the sum of

excitatory weights to each cell to equal 20, and identically normalize the sum of inhibitory weights received

by each cell.

Form the weight matrix. We regard the rate vector to be of the form

(
rE

rI

)
, where rE and rI are each

N = 1024-dimensional vectors of the firing rates of all E cells and all I cells respectively. The nth element,

1 ≤ n ≤ N , of rE or rI corresponds to the E or I cell, respectively, with (x, y) position

(mod(n, 32), ceil(n/32)). Accordingly, the weight matrix can be written as W =

(
WE −WI

WE −WI

)
where

each of the four blocks is an N ×N matrix, giving the projections of all N cells of one type to all N of the

other type, where the types are

(
E → E I → E

E → I I → I

)
. All the entries of all the W’s are positive, and the

minus sign for inhibitory synapses is added explicitly above.

For the special case of W of the form

(
WE −WI

WE −WI

)
, we can write its eigenvectors and eigenvalues as

follows. Let eDi be the eigenvectors of WE −WI , i = 1, . . . , N , with corresponding eigenvalues λDi (the ‘D’

is for ‘difference’). Then

(
eDi
eDi

)
is an eigenvector of W with eigenvalue λDi . This gives N of the 2N

eigenvectors of W. W is a 2N × 2N matrix, but it only has N independent rows (the 2nd N rows are

identical to the first N). Therefore it has rank N , meaning that it has N eigenvalues equal to zero. If

either WE or WI is invertible, the corresponding eigenvectors can be written as

(
(WE)−1WIbi

bi

)
or(

bi

WI)−1WEbi

)
respectively, where the bi, i = 1, . . . , N are any complete basis for N -dimensional

space.

a Compute and plot the 5 eigenvectors eDi with the largest eigenvalues (the eigenvalues will be real,

because WE −WI is symmetric) and note their corresponding eigenvalues. Plot them as
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2-dimensional heat maps, unpacking the N -dimensional vector into values on a 32× 32 grid. The

corresponding 5 eigenvectors of W have identical E and I activity patterns of the shape of the given

eDi .

b Can you say anything about how the spatial structure of these eigenvectors reflects the spatial

structure of the connectivity? For comparison, compute and plot the steady-state response of linear

rate dynamics to an oriented full-field input of orientation θ0 = 0o, and the steady-state response to

input of orientation θ0 = 90o, where the input to the E and I neurons at position x is given by

4e
− (θ0−θ(x))2

2(20o)2 . If the 2N -dimensional input vector is i, the steady-state response r is given by

r = (1−W)−1i where 1 is the 2N -dimensional identity matrix.

c Compute the correlation coefficient of each eigenvector eDi with each orientation response: to find the

correlation coefficient, make each vector zero-mean by subtracting off the mean element from each

element of the vector; then take the dot product of these two zero-mean vectors, and divide by the

product of the norms of the two zero-mean vectors.

d If eSi (‘S’ for sum) are the eigenvectors of WE + WI , with eigenvalue λSi , then

W

(
eSi
−eSi

)
= λSi

(
eSi
eSi

)
. That is, there is an effective feedforward weight from the difference

vectors

(
eSi
−eSi

)
to the corresponding sum vector

(
eSi
eSi

)
. Small E/I differences in various spatial

patterns evoke large (if λSi is large) responses of both E and I in the same pattern. (The fact that a

difference in a given spatial pattern evokes a sum response in exactly the same spatial pattern is a

result of our simplifying assumption that the two E projections are identical and the two I

projections are identical; the idea that patterns representing roughly opposite patterns of E and I

response (difference patterns) evoke responses in which E and I have similar patterns of response

(sum patterns) is more general.)

Now, note that assuming the eDi and the eSi are each complete orthonormal bases for the

N -dimensional space (which they are, because WE and WI are both symmetric); then, the vectors{
1√
2

(
eDi
eDi

)
, 1√

2

(
eSj
−eSj

)}
form an orthonormal basis for the 2N -dimensional space (a given

vector’s dot product with itself is 1, and the dot product of any two different vectors is 0). In this

case, we have found a Schur basis – an orthonormal basis in which W is upper triangular with the

eigenvalues on the diagonal. In particular, note that the vectors

(
eSi
eSi

)
can be written as linear

combinations of the vectors

(
eDi
eDi

)
– the latter are a complete basis for the N -dimensional set of

2N -dimensional activity patterns in which E and I have identical activity – so we can write

1√
2

(
eSi
eSi

)
=
∑
j wij

1√
2

(
eDj
eDj

)
for some weights wij . So, in the basis ordered with first all of the

vectors

{
1√
2

(
eD1
eD1

)
, 1√

2

(
eD2
eD2

)
, . . . , 1√

2

(
eDN
eDN

)}
and then all of the vectors{

1√
2

(
eS1
−eS1

)
, 1√

2

(
eS2
−eS2

)
, . . . , 1√

2

(
eSN
−eSN

)}
, the matrix W can be written as follows: on the

diagonal are the entries λD1 , λ
D
2 , . . . , λ

D
N , followed by N 0’s; the weights λSi wij are in the upper right,

in the ith row and (N + j)th column; and all other entries are zero. (To see this, note that, given
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some 2N -dimensional basis bi and some 2N × 2N matrix M, if Mbi =
∑
jmijbj , then the mij are

the elements of the matrix M in the basis bi.) (Note that the general form of a matrix in a Schur

basis allows nonzero entries anywhere above the diagonal, and nonzero eigenvalues anywhere along

the diagonal; this particular matrix has the lower half of rows = 0 because of our special assumption

that the two E projections are identical and the two I projections are identical.)

(Note, just FYI: more generally, a Schur basis for a matrix is found by (1) putting the eigenvectors of

the matrix in some order and then (2) performing Gram-Schmidt orthonormalization on these

ordered eigenvectors to produce an orthonormal basis, which will be a Schur basis. Because the

ordering of the eigenvectors is arbitrary, there are many possible Schur bases for a given matrix.

However, there is an invariant: because the Schur basis is orthonormal, the transformation to the

Schur basis is a unitary transformation, and under unitary transformations, the sum of the absolute

squares of the matrix entries are preserved. Since the diagonal is always the eigenvalues in any Schur

basis, and the entries below the diagonal are all zero, then if the matrix entries in a given Schur basis

are mij , this means that the sum
∑
i<j |mij |2 of the absolute squares of the feedforward weights – the

nonzero entries above the diagonal – is the same in any Schur basis. This sum, relative to the sum of

the absolute squares of all the matrix entries, is an invariant – the same for all Schur bases for a given

matrix – that gives some sense of how much “power” is in the feedforward connections relative to the

eigenvalues, which are the “self-loops” of Schur-basis activity patterns onto themselves.)

Now plot the 5 leading eSi (those with the largest λSi ), and note their corresponding λSi . Note that, if

λSi is large, small activity patterns in which E and I are both in the shape eSi but with opposite signs

evoke large activity patterns in which E and I are both in this shape with the same sign.

e Again, what can you say about how the spatial structure of the eSi relates to the spatial structure of

the connectivity and the evoked orientation responses.

f Compute the correlation coefficient of each eigenvector eSi with each orientation response.

g Finally, examine the dynamics of the non-normal amplification in this model. For each of the 5

leading eSi , start the dynamics with an initial condition

(
rE

rI

)
= 1√

2

(
eSi
−eSi

)
. The dynamics is

given by τ drdt = −r + Wr (the external input is zero). Plot the time course of |r|. To compute the

dynamics, you could use simple Euler, found by replacing τ drdt with r(t+∆t)−r(t)
∆t/τ :

r(t+ ∆t) = (1−∆t/τ)r(t) + (∆t/τ)Wr(t). Using ∆t/τ = 0.1 should be sufficient (you could check

that cutting ∆t in half doesn’t noticeably change the outcome, which is a decent check that your time

step is small enough). Continue the simulation until both components of r are small, say < 0.01.

h For each of the 5 eSi , plot the time course of |r| along with the functions λSi e
−t/τ and λSi te

−t/τ . You

should find that the time course of |r| is roughly sandwiched between these two, looking more like the

first for lower components (those with largest λSi ) and moving toward the latter for later components.

For these later components, you might want to scale down the λSi e
−t/τ so its peak is the same height

of the peak of the given sum vector component. The reasons why these time courses should bracket

the time course of |r| are explained in this footnote.1

Some context: it was observed that, in V1 spontaneous activity in anesthetized cat, patterns of activity

across the cortical surface that looked like responses to oriented stimuli occurred with larger amplitude

1Recall that, if there are two patterns, where the first pattern connects to itself with eigenvalue λ1 and connects to the

second pattern with feedforward weight wFF , and the second pattern connects to itself with eigenvalue λ2; then the response

6



than expected by chance. That is, looking at the correlation coefficient between spontaneous activity and

the evoked response to a drifting oriented grating, the average correlation coefficient was zero, but the

distribution of correlation coefficients was wider than to a control pattern with similar spatial-frequency

characteristics as the evoked response, suggesting larger spontaneous excursions in the directions of evoked

responses than in control responses [1]. It was suggested that this might mean there was the equivalent of a

bump attractor underlying this activity, so that activity intrinsically wanted to look like the cortex was

seeing a particular orientation even if the input didn’t statistically favor any orientation. A model was

built of a bump attractor network [2]: it concluded that either the bump attractor had to represent

position in a space of a high number of features (> 10), not just orientation; or the results had to come

from a regime without a bump attractor. This was based on such considerations as the slow dynamics of

the ring bump attractor, which become faster with multiple features; the single-peaked structure of the

distribution of correlation coefficients, which became multi-peaked for bump attractors with too few

features; and the width of the distribution of correlation coefficients, which was two wide for bump

attractors with too few features. On the other hand, in their hands, the non-bump-attractor scenario (1)

used Mexican hat connectivity and (2) predicted much too narrow a width of the distribution of correlation

coefficients, which could be fixed by assuming sufficient spatial correlations in the LGN input.

We believed that there was no “Mexican hat”, based on findings that, at least in upper and middle layers

of V1, the excitation and the inhibition that cells receive have the same orientation tuning [3–5]. We

wanted to know if the amplification could happen without a Mexican hat. We explored a simulation with E

and I cells with connectivity like that above, and found that patterns like evoked responses were being

amplified more than control patterns, as in the data of (author?) [1]. Figuring out why this was

happening then led us to understand the role of non-normal dynamics and effective feedforward

connections [6]: strong effective feedforward connections from small E/I differences in orientation-like

to an initial condition r1(0) = 1, r2(0) = 0, with no external input, is

r1(t) = r1(0)e−(1−λ1)t/τ (6)

r2(t) = wFF r1(0)
e−(1−λ1)t/τ − e−(1−λ2)t/τ

λ1 − λ2
(7)

In our case, pattern 1 is the difference pattern, and it has λ1 = 0. When λ1 = λ2, then e−(1−λ1)t/τ−e−(1−λ2)t/τ

λ1−λ2
becomes

(t/τ)e−(1−λ1)t/τ , as can be seen by taking λ2 = λ1 + ε and taking the limit ε→ 0:

e−(1−λ1)t/τ − e−(1−λ2)t/τ

λ1 − λ2
=
e−(1−λ1)t/τ (1− eεt/τ )

−ε
(8)

→
e−(1−λ1)t/τ (−εt/τ)

−ε
= (t/τ)e−(1−λ1)t/τ (9)

where we used eεt/τ = 1 + εt/τ +O(ε2) where O(ε2) means terms that depend on 2nd or higher powers of ε.

For us, r2 would be the sum pattern, but it does not correspond to a single eigenvalue; rather it is a linear combination

of different patterns

(
eDj
eDj

)
, each of which has a different eigenvalue λDj and thus decays at a different rate. One of these

different orthogonal components will decay as λSi wij
e−t/τ−e−(1−λDj )t/τ

−λDj
. Since

∑
j w

2
ij = 1, then the norm of the sum of these

different components would have a size λSi times an effective time course which represents some sort of mixture of these time

courses for different λDj .

The sum patterns with larger λSi will likely be composed of patterns

(
eDi
eDi

)
with larger (less negative) λDi . Assuming

all the λDi are ≤ 0, then the most slowly the sum pattern could decay is if it was dominated by a pattern that decayed at

rate 0, giving a decay of λSi (t/τ)e−t/τ . On the other hand, later patterns should decay at rates determined by more negative

eigenvalues. With λ1 = 0, as λ2 → −∞, the response time course e−(1−λ1)t/τ−e−(1−λ2)t/τ

λ1−λ2
goes to e−t/τ

∞ , that is, to a time

course approaching e−t/τ with shrinking amplitude. The actual decays, as a mix of different finite decay rates, should cover

some range of time courses between λSi (t/τ)e−t/τ and λSi e
−t/τ , with the latter’s amplitude likely needing to be adjusted.
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patterns to strong E/I sums in orientation-like patterns could explain the result. Given noise that would

include random fluctuations in many patterns including those of the small E/I differences, the fact that the

strongest feedforward connections are for patterns resembling evoked orientation maps would explain why

such patterns would appear with larger amplitude than alternative patterns. (Note: the most strongly

amplified pattern is the spatially uniform pattern. (author?) [1] saw plenty of variability in this pattern,

but because this could result artifactually, e.g. from changes in power to the light source (they were doing

intrinsic signal imaging based on shining a light of a given wavelength on cortex and looking at the

strength of the reflected signal), they filtered out any spatially uniform signals and did not study them.)

3 [Optional] Ring networks: Bump attractors or an SSN

• Bump attractor: We’ll consider a ring of 180 grid position, representing preferred direction from 0

to 2π (2π radians, i.e. 360o) by ∆θ = 2π/180. There is a single unit at each position, which projects

both positive and negative synapses. We consider linear-rectified input/output functions. We will

construct discrete dynamics on the grid from a continuous model, in which θ is a continuous variable

from 0 to 2π, r(θ) is the response of the unit preferring orientation θ and i(θ) is its input, W(θ − θ′)
is the connection between the units preferring θ and θ′, and vth is a threshold for firing:

dr(θ)

dt
= −r(θ) +

[∫ 2π

0

dθ′

2π
W (θ − θ′)r(θ′) + i(θ)− vth

]
+

(10)

Here, [x]+ is rectification: = x if x > 0, = 0 otherwise.

We move this to a grid with positions θi, i = 1, . . . , 180; ri = r(θi), and r is the resulting vector of

rates, and similarly for ii and i; vth is the vector all of whose elements are vth; and

Wij = W (θi − θj)∆θ
2π and W the resulting matrix, giving dynamics

dr

dt
= −r + [Wr + i− vth]+ (11)

We define W and i from

W (θ) = W0 + 2W1 cos(θ) (12)

i(θ) = i0 + 2i1 cos(θ − θi) (13)

Choose 1 < W1 < 2 and W0 +W1 < 2 with 0 < W0 < 1 (the dynamics lose stability if W1 > 2 or

W0 > 1 or, approximately, W0 +W1 > 2; for W1 < 1, there is no bump solution).

a First consider a uniform input, i1 = 0. Verify that for i0 < vth, even if you start with a random

initial condition of positive activations, the dynamics will decay to r = 0. Simulate for a couple

of values of i0 > vth, say i0 = vth + 1 and i0 = vth + 10. Verify that if your initial condition has

any nonzero (positive) noise, no matter how small, the dynamics will evolve to a bump solution

(they will probably evolve to a bump solution even for an initial condition r = 0, due to

numerical noise in the simulation). There is “dynamical symmetry breaking”: the dynamics and

the input are circularly symmetric, but the circularly symmetric activity pattern (the uniform

pattern) is unstable to any small perturbation, and the bump solution, which breaks the circular

symmetry by choosing a particular location on the circle, is stable. For noisy initial conditions

the bump should appear at a random location (probably selected by where some weighted sum
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over the initial noise in a local region is largest, but likely to appear random to you), with a

common shape and height for a given i0. How do the shape and height change for the different

values of i0?

b Analytically, the bump activity should reach 0 at an angle ψ from the bump center, where

2W1G1(ψ) = 1 and G1(ψ) = 1
2π

(
ψ − sin(2ψ)

2

)
, with 0 < ψ < π (this is the analytic solution for

continuous θ; might be slightly changed by going to a discrete grid). Does this appear to agree

with your simulations? (I will place in the course directory a file, ring-model.pdf, that gives the

analytics for those who are interested.)

c Now add a weak tuned input i1, say i1 = 0.1(i0 − vth). Does this choose the bump location?

Does the bump appear to be otherwise similar or identical?

d Finally, simulate with the same parameters except 0 < W1 < 1. Now you should find that the

uniform solution is stable, and there is no bump solution to a uniform input. What steady state

do you arrive at for a non-uniform input (nonzero i1), and how does it compare to the bump

solution for W1 > 1?

Additional things you might try (optional): explore the dynamics of the bumps in one or both of two

ways:

– For the case with i1 = 0: Add noise to the simulation, say adding some small i.i.d. noise to each

ii at each timestep. You should find that the steady-state bump will drift in location, roughly as

a random walk meaning the distance the bump travels over some time will grow as the

squareroot of the time;

– For a case with i1 > 0: After the steady state is reached in response to a tuned stimulus

centered at θi, instantaneously turn that stimulus off and turn on another tuned stimulus of the

same strength at a different location. How does the bump move from one location to the other –

does one bump shrink while the other grows, or does the bump rotate from one position to the

other? Does this depend on whether the 2nd bump is relatively near to or far from the first?

How long does the change take?

• SSN network We’ll use the same grid of 180 positions on a ring, but now there is an E and an I cell

at each position. We’ll consider the ring to span 180o, representing a preferred orientation, so the

grid points have spacing 1o. We use a power-law input/output function. We use connectivity with no

“Mexican hat” – as in the model of non-normal dynamics above, we take the four connectivity

functions (E → E, E → I, I → E, I → I) to have the same width, differing only in their strengths.

We define these functions on the grid: the connection between the unit of type Y (E or I) at position

θj to the unit of type X at position θi is

WXY
ij = JXY e

−
Θ(θi,θj)

2σ2
W (14)

Here, Θ() is the shortest distance around a circle defined in Eq. 4, above.

For parameters, use JEE = 0.044, JIE = 0.042, JEI = 0.023, JII = 0.018, σW = 32o.

We take r =

(
rE

rI

)
, where rE and rI are the firing rates of the E and I cells respectively, both

ordered in the same way around the ring (e.g., from 1o to 180o). Our dynamical equations are

TτE
dr

dt
= −r + k(Wr + i)n+ (15)
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where (x)n+ is applied element by element and, for a given element xi, = xni if xi > 0; = 0, otherwise.

We’ll take k = 0.04 and n = 2. Take τE = 20ms and take T to be a diagonal element with entries 1

for the E cells and 1/2 for the I cells, i.e. τI = 10ms. (The faster τI may not be necessary but helps

ensure stability).

For an input i of a stimulus with direction θ0, the input to both the E and the I units at θi is

ii = ce
−Θ(θi,θ0)

2σ2
i . Here, c is a constant (c for ’contrast’) that you will vary to vary the strength of the

stimulus. Take σi = 30o.

a First, for a single stimulus of orientation of your choice θ0, simulate the response, starting from

an initial condition r = 0, for c = {1.25, 2.5, 5, 10, 20, 40}. Again, use first-order Euler, a time

constant of 1ms should be fine. For each c, simulate until a steady state is reached by some

criterion (change per timestep gets sufficiently small). For the steady state, for the E unit and

the I unit at the stimulus center, plot, as a function of c:

– Their firing rate;

– Their feedforward input, their net recurrent input (E − I, where E is the recurrent

excitatory input and I is the recurrent inhibitory input, taken to have a positive sign), and

their total input (feedforward + net recurrent).

– The percent of the unit’s input that is feedforward or is recurrent, counting recurrent input

now as E + I and total input as FF + E + I

– For the recurrent input, the percent of it that is excitatory: E
E+I

You should see: saturation of excitatory firing rates; a transition from a feedforward-dominated

regime for weak input, to a recurrent-dominated regime for stronger input; that for stronger

input, the recurrent input largely cancels or ‘balances’ the feedforward input; and that the

recurrent input becomes more inhibition-dominated for stronger stimuli.

b Now consider adding a 2nd stimulus 90o away from the first. By symmetry, that stimulus by

itself should produce a response exactly like the response to the θ0 stimulus, except shifted by

90o. So you don’t need to simulate response to that stimulus alone; but simulate response to the

two stimuli shown at the same time, again for the given values of c (same c for both stimuli).

You know by symmetry that the responses must be identical at each stimulus center. So,

choosing the units at one of the stimulus centers, for the E and for the I units, plot the ratio of

their steady-state response when both stimuli are shown together, to their steady-state response

when only one stimulus is shown. You should find that this ratio is > 1, representing supralinear

summation, for weaker inputs but < 1, representing sublinear summation, for stronger inputs.

c For at least some, if not all, of the c values, you probably want to plot, with preferred

orientation from 0o to 180o on the x axis, the sum of the responses of the E unit to each

stimulus shown alone, and its response to the two stimuli shown together; and the same for the I

unit. This will allow you to directly see the supralinear and sublinear summation.

Other things you might want to try (optional):

– Give a uniform input of varying strengths to the network; do you ever see non-uniform solutions

emerge? (you shouldn’t)

– Consider adding the two stimuli with different c values; you should see the emergence of

“winner-take-all” behavior, where the greater the difference between the c values for the two
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different stimuli, the more the response to the weaker stimulus is suppressed (relative to its

response if shown alone with that c value) and the more the response to the stronger stimulus

approaches the response if it were shown by itself.
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